
Math 4200
Wednesday November 25
Chapter 5:  5.1-5.2 conformal maps and fractional linear transformations, continued.   
We'll begin by finishing the discussion in Monday's notes.  Then we'll discuss the 
algebra and geometry of linear fractional transformations, which are introduced there.

Announcements:  



Math 4200-001
Week 14 concepts and homework

5.1-5.2
Due Thursday December 3 at 11:59 p.m.

5.1:   10, 11, 12.
5.2    1, 4a, 6, 7, 9, 10, 17, 24, 26, 33, 34



Continuing the discussion from Monday,

Example  Let

f z = a z b
c z d

be a (non-constant) FLT.  Use matrix algebra to find a formula for f 1 z .

Corollary  Fractional linear transformations are bijections of the Riemann sphere 
.   In fact, regarding the Riemann sphere as a Riemann surface (see later 

discussion), it turns out that these all of the only conformal bijections of the Riemann 
sphere with itself.



Theorem  Fractional linear transformations map the set of all circles and lines to itself.  

proof:  Any circle or line in the x y plane can be described implicitly as the solution 
set to an equation

1                                 A x2 y2 B x  C y  D = 0         
where A, B, C, D  and are not all zero.  

We already know that translating or rotating circles (resp. lines) yields circles (resp. 
lines).  So the Theorem holds for the first two transformations below.  Show it also 
holds for inversions, the third transformation.

T1 z = z  a   (translation)
T2 z = c z      (rotation-dilation)

T3 z = 1
z

      (inversion)

convert the solution set of an equation of form (1) into the solutions set of a (different) 
equation of form (1).

Then show that any fractional linear transformation 

f z = a z b
c z d

is a composition of translations, rotation-dilations, and inversions.   Hint:  Treat 
c = 0, c 0 separately.  If c 0 first do something equivalent to long division to 
rewrite f .



Notice that 

f z = z a
z b

c b
c a

maps
a 0

 b
 c 1.

Since 3 points uniquely determine particular circles one can use FLT's to map any circle 
or line to any other circle or line.

Using functions of this form, and their inverses, one can construct FLT's to map triples 
of points to triples of points:

a
b
c

   
d
e
f

.

Thus you can map any line or circle to any other line or circle.

Example  Find a FLT from the unit disk to the upper half plane by mapping 
1 0

 1
 i 1

and making any necessary adjustments.   (By magic, once you know the boundary of the
disk goes to the real axis, you only have to check that one interior point goes to an 
interior point, or that the orientation is correct along the boundary, to know that you're 
mapping the unit disk to the upper half plane instead of the lower half plane.  The proof 
of the magic theorem is an appendix in today's notes.)



Example  Find a conformal transformation of the first quadrant to the unit disk, so that 
the image of 1 i  is the origin.  How many such conformal transformations are there?  
It's fine to write your transformation as a composition.



Riemann surfaces:  These are special cases of two-dimensional differentiable manifolds,  
in the case that the transition functions between atlas pages are all conformal 
diffeomorphisms.  (See Wikipedia.)

Definition  A Riemann surface S is a topological space S together with an atlas 
consisting of charts U , 

A
 where 

(1)  
A

 U  = S and each U  is open.

(2)  Each : U V  is a homeomorphism.  We can call the sets V  pages of the

atlas.
(3)  The transition maps between parts of the pages of the atlas  

1 :  U U U U  are all  conformal.



This definition makes sense when you think of what an actual geographical atlas is, 
along with a few concrete examples including the Riemann sphere:

  The complex plane itself, or any open set in the complex plane is a Riemann surface 
which has one possible atlas consisting of a single page, with U = V  and = id.

   The Riemann sphere , which is homeomorphic to the unit sphere in 3 , as
we've discussed. The easiest atlas to use has two pages:

U1 = , 1 : U1 V1 = , 
 1 z = z

U2 = \ 0 , 2 : U2 V2 =

 2 z =
1
z z

0 z =

Then U1 U2  is the punctured complex plane 0   and 

2 1
1 z = 1

z ;  1 2
1 z = 1

z .



Definition:  Let S1, S2  be Riemann surfaces, and f : S1 S2  be a function.  Then f  is
analytic if and only if each of the corresponding maps from atlas pages of S1  to atlas 
pages of S2  are analytic.  Precisely, given an atlas for S1 :

U , : U V
A

and and atlas for S2
O , : O W

B
then f  is defined to be analytic if and only if  each triple composition

f 1 : V W

is analytic.

So for a function f :   there are two cases to consider, in order to deduce 
whether f  is analytic near z0 , as a map of Riemann surfaces:

f z0 :    usual definition.

f z0  or undefined:  Does 1
f z  have a removable singularity at z0?    In other 

words does f z  have a pole at z0 , so that f z0 = ?

The text defined a meromorphic function on  to be one which is analytic except for a 
countable number of pole singularities.  This corresponds to f :  being 
analytic as a function between Riemann surfaces.



For a function f :   there are two additional cases to consider to decide 
whether f  is analytic as a function between Riemann surfaces:

z0 = , f z0 :    Does f 1
z  have a removable singularity at z = 0?

z0 = , f z0 :    Does 1

f 1
z

  have a removable singularity at z = 0?



Appendix:  Magic Theorem  Let A, B n   be open, connected, bounded sets.
Let f : A n,  f C1,   with dfx : Tx

n Tf x
n   invertible x A  (i.e. the Jacobian matrix is 

invertible).  Furthermore, assume
       f : A

_
n  is continuous and one-to-one.

      f  A =  B
       f x0 B for at least one x0 A.

Then  f A = B and f  is a global diffeomorphism between A and B.  (i.e. f 1 : B A is also 
differentiable), and f 1 : B

_
A
_

 is continuous.

proof:  Step 1:  f A B.
             proof:  Let

O x A  f x B
Then
      x0 O
      O is open by the local inverse function theorem, since x1 O and f x1 B implies there is a 
local inverse function from an open neighborhood of f x1  in B, back to a neighborhood of x1  in A.
      O is closed in A because if xk O, xk x A then f xk f x  and since 

f xk B we have f x B
_

.  But since f  is one-one and maps the boundary of A bijectively to the
boundary of B, f x  cannot be in the boundary of B.  Thus f x B.
       Thus, since A is connected, O is all of A, and f A B.

Step 2:  f A = B.
     proof:
       f A  is open (by the local inverse function theorem again), so f A B is open.  
       And f A  is closed in B because if

f xk = yk f A , with yk y B, 

then because A
_

 is compact, a subsequence xk
j

x A
_

 with f xk
j

f x = y, so x  A 

because y B, so x A and y f A .
        So, because B is connected, f A  is all of B.

QED.



Remark:  In  you can also imply this theorem to unbounded domains, i.e. in  because of the 
following diagram, in which f2 f f1

1  satisfies the hypotheses of the original theorem:  


